Sandia

Exceptional service in the national interest @ National
Laboratories

Collaborators:

Erik Boman, Irina Demeshko, Carter Edwards,
Mark Hoemmen, Daniel Sunderland, Christian
Trott

Opportunities and Challenges in Developing and Using
Scientific Libraries on Emerging Architectures

Michael Heroux, Sandia National
Laboratories, USA

f/&"ﬂ"\\‘ U.S. DEPARTMENT OF V' Y A DW{
‘;i ENERGY /A’ A4 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
e Natlonal Nuclesr Securlty Adminietraton Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sandia
rl1 National

Laboratories

New Trends and Responses

" |ncreasing data parallelism:
= Design for vectorization and increasing vector lengths.
= SIMT a bit more general, but fits under here.
" |ncreasing core count:
= Expose task level parallelism.
= Express task using DAG or similar constructs.
= Reduced memory size:
= Express algorithms as multi-precision.
= Compute data vs. store
= Memory architecture complexity:
= Localize allocation/initialization.
= Favor algorithms with higher compute/communication ratio.

= Resilience:
= Distinguish what must be reliably computed.
= |ncorporate bit-state uncertainty into broader UQ contexts?

FUTURE PARALLEL APPLICATION
AND LIBRARY DESIGN: SUGGESTED
PRACTICES 6

Sandia
Il'l National
Laboratories

Practice #1:
Encapsulate All Computation

= Fortran/C functions, done. IF no globals/commons.

= Methods in classes:
= Extract Loops.
= Create catalog of functions.

= Functions usable as:
= Kernels from OpenMP, TBB, etc.
= Starting point for lambda/functor based design.

= Starting point for thread-safe methods.

San_diaI
Compile-time Polymorphism) e

pen VIP
/ Kernel

Cuda

Kernel

W

Kokkos functor/

Practice #2) i
Construct irregular objects step by step.

A Simple Epetra/AztecOO Program M.

Il Header files omitted...

int main(int argc, char *argv[]) {
MPI_Init(&argc,&argv); // Initialize MPI, MpiComm
Epetra_MpiComm Comm(MPI_COMM_WORLD);

/Il ***** Map puts same number of equations on each pe *****

int NumMyEIements =1000;

/[***** Create x and b vectors *****
Epetra_Vector x(Map);

Epetra_Vector b(Map);

b.Random(); // Fill RHS with random #s

I/ ***** Create Linear Problem *****
Epetra_LinearProblem problem(&A, &x, &b);

/| ***** Create an Epetra_Matrix tridiag(-1,2,-1) *****

Epetra_CrsMatrix A(Copy, Map, 3);
double negOne = -1.0; double posTwo = 2.0;

for (int i=0; i<NumMyElements; i++) {
int GlobalRow = A.GRID(i);
int RowLess1 = GlobalRow - 1;
int RowPlus1 = GlobalRow + 1;
if (RowLess1!=-1)

A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowLess1);

if (RowPlus1!=NumGlobalElements)
A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowPlus1);
A.InsertGlobalValues(GlobalRow, 1, &posTwo, &GlobalRow);

}
A.FillComplete(); // Transform from GIDs to LIDs

N\

/[***** Create/define AztecOO instance, solve *****
AztecOO solver(problem);
solver.SetAztecOption(AZ_precond, AZ_Jacobi);
solver.lterate(1000, 1.0E-8);

// *kk*k Report results’ flnISh kkhkkkhkkkhkkkhkhkhhkhkhkkhkkkk
ut << "Solver performed " << solver.Numilters()
<< "jterations." << end|
<< "Norm of true residual =
<< solver.TrueResidual()
<< endl

MPI_Finalize() ;
return O;

}

l—zg;

Construction for Irregular Data:) e,
Common Pattern

Fill: Insert data.
*Analyze |l: Graphs.
Compute: Use the data object.

#2 Construction for Irregular Data: Bit by Bit
The Path to Scalable Threading

= Count:
= “Dry-run of allocation and fill.
= Resist allocating storage.

= Analyze I:

= Determine required storage, who should
allocate.

= Allocate:

= Coordinated, varies across platforms.
= |nitialize:
= |Improved locality.
= Fill: Insert data.
= Analyze Il: Graphs.
= Compute: Finally.

Sandia
National
Laboratories

Tpetra/Kokkos Example) .

https://code.google.com/p/trilinos/wiki/KokkosExample03

(written by Mark Hoemmen)

Step 1: Count

// Do a reduction over local
elements to count the total
number of

// (local) entries in the graph.
While doing so, count the number

// of (local) entries in each row,
using Kokkos' atomic updates.

Kokkos::View<size_t*> rowCounts
("row counts", numLclRows);

size_t numLclEntries = 0;

Kokkos::parallel_reduce
(numLclElements,

[=] (const LO elt, size_t&
curNumLclEntries) {

const LO IclRows = elt;

// Always add a diagonal matrix
entry.

Kokkos::atomic_fetch_add
(&rowCounts(lclRows), 1);

curNumLclEntries++;

// Each neighboring MPI
process contributes an entry to the

// current row. In a more
realistic code, we might handle this

// either through a global
assembly process (requiring MPI

// communication), or through
ghosting a layer of elements (no

// MPl communication).

// MPI process to the left sends
us an entry

if (myRank >0 && IclRows == 0)

Kokkos::atomic_fetch_add
(&rowCounts(IclRows), 1);

curNumLclEntries++;

}
// MPI process to the right
sends us an entry

if (myRank + 1 < numProcs &&
[clIRows + 1 == numLclRows) {

Sandia
National
Laboratories

Kokkos::atomic_fetch_add
(&rowCounts(lclRows), 1);

curNumLclEntries++;

}

// Contribute a matrix entry to
the previous row.

if (IclIRows > 0) {

Kokkos::atomic_fetch_add
(&rowCounts(lclRows-1), 1);

curNumLclEntries++;

}

// Contribute a matrix entry to
the next row.

if (IclRows + 1 < numLclRows) {

Kokkos::atomic_fetch_add
(&rowCounts(lclRows+1), 1);

curNumLclEntries++;

}

}, numLclEntries /* reduction
result */);

14

Step 2: Analyze |

Step 3/4: Allocate/Initialize

Step 5: Fill

// Iterate over elements in parallel to fill the graph,
matrix, and

// right-hand side (forcing term). The latter gets the
boundary

// conditions (a trick for nonzero Dirichlet boundary
conditions).
Kokkos::parallel_for (humLclElements, [=] (const LO
elt) {
// We multiply dx*dx into the forcing term, so the
matrix's
// entries don't need to know it.
const double offCoeff = -diffusionCoeff / 2.0;
const double midCoeff = diffusionCoeff;
// In this discretization, every element corresponds
to a degree

// of freedom, and to a row of the matrix.
(Boundary conditions

// are Dirichlet, so they don't count as degrees of
freedom.)

const int IclRows = elt;

// Always add a diagonal matrix entry.
{

const size_t count = Kokkos::atomic_fetch_add
(&rowCounts(IclRows), 1);

colindices(rowOffsets(lclRows) + count) = IclRows;

Kokkos::atomic_fetch_add
(&matrixValues(rowOffsets(IcIRows) + count),
midCoeff);

}

// Each neighboring MPI process contributes an
entry to the

// current row. In a more realistic code, we might
handle this

// either through a global assembly process
(requiring MPI

// communication), or through ghosting a layer of
elements (no

// MPl communication).

// MPI process to the left sends us an entry
if (myRank >0 && IclRows == 0) {
const size_t count = Kokkos::atomic_fetch_add
(&rowCounts(IclRows), 1);
colindices(rowOffsets(IclRows) + count) =
numLclRows;

Kokkos::atomic_fetch_add
(&matrixValues(rowOffsets(IclRows) + count),
offCoeff);

}
// MPI process to the right sends us an entry

if (myRank + 1 < numProcs && IclRows + 1 ==
numLclRows) {
const size_t count = Kokkos::atomic_fetch_add
(&rowCounts(IclRows), 1);

// Give this entry the right local column index,
depending on

// whether the MPI process to the left has already
sent us an

// entry.

const int colind = (myRank > 0) ? numLclRows + 1 :
numLclRows;

collndices(rowOffsets(IclRows) + count) = collnd;

Kokkos::atomic_fetch_add

Sandia
National
Laboratories

(&matrixValues(rowOffsets(IclIRows) + count),
offCoeff);

}

// Contribute a matrix entry to the previous row.
if (IcIRows > 0) {
const size_t count = Kokkos::atomic_fetch_add
(&rowCounts(lclRows-1), 1);

colindices(rowOffsets(lclRows-1) + count) =
IcIRows;

Kokkos::atomic_fetch_add
(&matrixValues(rowOffsets(IclIRows-1) + count),
offCoeff);

}
// Contribute a matrix entry to the next row.
if (IcIRows + 1 < numLclRows) {

const size_t count = Kokkos::atomic_fetch_add
(&rowCounts(IclRows+1), 1);

colindices(rowOffsets(lclRows+1) + count) =
IclIRows;

Kokkos::atomic_fetch_add
(&matrixValues(rowOffsets(IclIRows+1) + count),
offCoeff);

}
N;

17

Step 6: Analyze Il .

Step 7: Compute

Sandia
rl1 National
Laboratories

3: TASK-CENTRIC/DATAFLOW DESIGN

19

Classic HPC Application Architecture i) Mo

Laboratories

o Logically Bulk-Synchronous, SPMD

o Basic Attributes:
o Halo exchange.

o Local compute.
4 o Global collective.
/| Subdomain
/| 1 per MPI process o Halo exchange.

o Strengths:

o Portable to many specific system

architectures. 0 Weaknesses:

o Separation of parallel model

(SPMD) from implementation (e.g., o Not well suited (as-is) to emerging

o Domain scientists write sequential o Unable to exploit functional on-chip
code within a parallel SPMD parallelism.
framework. - _
" o Difficult to tolerate dynamic
o Supports traditional languages)
(Fortran, C). latencies.
o Many more, well known. o Difficult to support task/compute

heterogeneity.

20 20

Task-centric/Dataflow Application Architecture rh) e

o Strengths:

o Portable to many specific system
architectures.

o Separation of parallel model from
implementation.

o Domain scientists write sequential code
within a parallel framework.

o Supports traditional languages (Fortran, C).

o Similar to SPMD in many ways.

21

Laboratories

Patch: Logically connected portion of
global data. Ex: subdomain, subgraph.

Task: Functionality defined on a patch.

Many tasks on many patches.

Patch
Many per MPI process

o More strengths:

Well suited to emerging manycore
systems.

Can expiloit functional on-chip
parallelism.

Can tolerate dynamic latencies.

Can support task/compute
heterogeneity.

21

Task on a Patch

= Patch: Small subdomain or subgraph.

Big enough to run efficiently once its starts execution.
CPU core: Need ~1 millisecond for today’s best runtimes (e.g. Legion).

GPU: Give it big patches. GPU runtime does manytasking very well on its own.

= Task code (Domain scientist writes most of this code):

Standard Fortran, C, C++ code.
E.g. FEM stiffness matrix setup on a “workset” of elements.
Should vectorize (CPUs) or SIMT (GPUs).

Should have small thread-count parallel (OpenMP)
Take advantage of shared cache/DRAM for UMA cores.

Source line count of task code should be tunable.
Too coarse grain task:

— GPU: Too much register state, register spills.

— CPU: Poor temporal locality. Not enough tasks for latency hiding.
Too fine grain:

— Too much overhead or

— Patches too big to keep task execution at 1 millisec.

Sandia
National
Laboratories

22

Portable Task Coding Environment @

Task code must run on many types of cores:
= Standard multicore (e.g., Haswell).
= Manycore (Intel PHI, KNC, KNL).
= GPU (Nvidia).

= Desire:

= Write single source.

= Compile phase adapts for target core type.

= Sounds like what?

= Kokkos (and others: OCCA, RAJA, ...):
= Enable meta programming for multiple target core architectures.
= Future: Fortran/C/C++ with OpenMP 4:
= Limited execution patterns, but very usable.
= Like programming MPI codes today: Déja vu for domain scientists.
= Other future: C++ with Kokkos/OCCA/RAJA derivative in std namespace.

= Broader execution pattern selection, more complicated.

Sandia
National _
Laboratories

23

Sandia
Task Management Layer)
New layer in application and runtime:
= Enables (async) task launch: latency hiding, load balancing.

= Provides technique for declaring inter-task dependencies:

Data read/write (Legion).
— Task A writes to variable x, B depends on x. A must complete before B starts.

Futures:
— Explicit encapsulation of dependency. Task B depends on A’s future.

Alternative: Explicit DAG management.
= Aware of temporal locality:
Better to run B on the same core as A to exploit cache locality.

= Awareness of data staging requirements:

Task should not be scheduled until its data are ready:
— If B depends on remote data (retrieved by A).

= Manage heterogeneous execution: A on Haswell, B on PHI.
= Resilience: If task A launched task B, A can relaunch B if B fails or times out.

What are the app vs. runtime responsibilities?
How can each assist the other?

24

Open Questions for Task-Centric/Dataflow Strategies ()i,

25

Functional vs. Data decomposition.

= Qver-decomposition of spatial domain:
Clearly useful, challenging to implement.

= Functional decomposition:

Easier to implement. Challenging to
execute efficiently (temporal locality).

Dependency specification mechanism.

= How do apps specify inter-task
dependencies?

= Futures (e.g., C++, HPX), data addresses
(Legion), explicit (Uintah).

Roles & Responsibilities: App vs Libs vs
Runtime vs OS.

Interfaces between layers.

Huge area of R&D for many years.

Laboratories

Data challenges:

Read/write functions:
= Must be task compatible.
= Thread-safe, non-blocking, etc.

Versioning:
= Computation may be executing across
multiple logically distinct phases (e.g.
timesteps)
= Example: Data must exist at each grid
point and for all active timesteps.

Global operations:
= Coordination across task events.

= Example: Completion of all writes at a
time step.

25

Execution Policy for Task Parallelism rhh)

= TaskManager< ExecSpace > execution policy

= Policy object shared by potentially concurrent tasks
TaskManager<...> tm(exec_space, ...);
Future<> fa = spawn(tm, task_functor_a); // single-thread task
Future<> fb = spawn(tm , task_functor_b);

= Tasks may be data parallel
Future<> fc = spawn_for(tm.range(0..N), functor _c);
Future<value_type> fd = spawn_reduce(tm.team(N,M), functor_d);
wait(tm); // wait for all tasks to complete

= Destruction of task manager object waits for concurrent tasks to complete

= Task Managers
= Define a scope for a collection of potentially concurrent tasks

= Have configuration options for task management and scheduling
= Manage resources for scheduling queue

Kokkos/Qthread LDRD

Sandia
Movement to Task-centric/Dataflow is Disruptive:) fesma
Use Clean-slate strategies

* Best path to task-centric/dataflow.

e Stand up new framework:

* Minimal, representative
functionality.

e Make it scale. New Minimal-feature App

» Distill minimal modeling
Current Full-featured A - “Clean slate” development.

- Classic parallel app design.

capabilities needed

* Mine functionality from previous
torepresentdata = - New parallel app design.

app. Full modeling capabilities. . . —
PP ; - Scalable on jassFi’c systems depr;‘::i’:rr:‘csn;airt]:rns e e icanatlles
* May need to refactor a bit. : ‘ - Scalable on future systems.
¢ May want to refactor |
substantially. Utilize new design,
* Historical note: Refactor and s'z;f:;r,‘,';
. migrate modeling :
* This was the successful approach capabilities into l
in 1990s migration from vector new framework.
multiprocessors (Cray) to Future Full-featured App
distributed memory clusters. “Clean Slate” App - New parallel app design.
* In-place migration approach . . - Full modeling abilities.
provided early distributed Migration Strategy - Scalable on future systems.

memory functionality. Failed
long-term scalability needs.

27

Phased Migration to Task-centric/
Dataflow

All Apps Looking for new Node-level

programming environments.
Exploring standards, emerging:

* OpenMP, pthreads.

* OpenMP 4, OpenACC.
Exploring non-standard:

* HPX (Parallex).

* Legion.
Brute force:

* Uintah framework.
Strategy:

. Phase 1: On-node.
. Phase 2: Inter-node.

28

network of
computational
nodes

computational
node with
manycore CPUs
and/or
GPGPU

Inter-node/inter-device (distributed)
parallelism and resource management

Sandia
,‘1 National

Laboratories

Sequential

Communicating
Processes

A

Node-local control flow (serial)

Intra-node (manycore) parallelism

and resource management

1

Stateless, vectorizable, efficient
computational kernels
run on each core

Buniojoejay |9|leied g eseyd >

Threaded Processes

Stateless kernels

Buniojoejey |9|eled | 8seyd >

28

Summary: #1 Encapsulate Lf— S

= Didn’t say much, but this is a good practice, no matter what.
= |n Fortran/C:

= Simple functions without side effects.

= Fortran pure/elemental procedures.
= |n C++:

= Simple functions,

= functors,

= |ambdas.

Summary: #2 Thread-scalable algorithms .

= Scalable construction of irregular data requires a new
approach:

= Every significant loop must scale in thread count.
= Must separate analysis from allocation.
= Atomic is your friend.

= Much of the complexity can be encapsulated.

Summary: #3 Task-centric app design Luj

Scalable application design will move to a task-centric architecture:
= Provides a sequential view for domain scientists.
Looks a lot like MPI programming.
Only added requirements: Consumer/producer dependencies.
= Support vectorization/SIMT within a task.

= Supports many (all, really) threading environments.
= Permits continued use of Fortran.

= Provides a resilience-capability architecture.
Challenges to developing task-centric apps:

= Much more complicated MPI node-level interactions:

= OS/RT support for task-DAGS:

What are the Apps responsibility? How can OS/RT assist?
Concurrent execution is essential for scalability.

— Must be reading/writing from memory, computing simultaneously.

31

